
1H NMR-Based Metabonomic Investigation of the Effect of

Two Different Exercise Sessions on the Metabolic Fingerprint of

Human Urine

Alexandros Pechlivanis,†,| Sarantos Kostidis,‡,| Ploutarchos Saraslanidis,§ Anatoli Petridou,§

George Tsalis,§ Vassilis Mougios,§,⊥ Helen G. Gika,† Emmanuel Mikros,‡,# and
Georgios A. Theodoridis*,†

Department of Chemistry, Aristotle University of Thessaloniki, 54124 Greece, Department of Pharmaceutical
Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Greece, and

Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 54124 Greece

Received July 2, 2010

Physical exercise modifies animal metabolism profoundly. Until recently, biochemical investigations
related to exercise focused on a small number of biomolecules. In the present study, we used a holistic
analytical approach to investigate changes in the human urine metabolome elicited by two exercise
sessions differing in the duration of the rest interval between repeated efforts. Twelve men performed
three sets of two 80 m maximal runs separated by either 10 s or 1 min of rest. Analysis of pre- and
postexercise urine samples by 1H NMR spectroscopy and subsequent multivariate statistical analysis
revealed alterations in the levels of 22 metabolites. Urine samples were safely classified according to
exercise protocol even when applying unsupervised methods of statistical analysis. Separation of pre-
from postexercise samples was mainly due to lactate, pyruvate, hypoxanthine, compounds of the Krebs
cycle, amino acids, and products of branched-chain amino acid (BCAA) catabolism. Separation of the
two rest intervals was mainly due to lactate, pyruvate, alanine, compounds of the Krebs cycle, and
2-oxoacids of BCAA, all of which increased more with the shorter interval. Metabonomics provides a
powerful methodology to gain insight in metabolic changes induced by specific training protocols and
may thus advance our knowledge of exercise biochemistry.
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1. Introduction

Physical exercise is a powerful modifier of animal metabo-
lism, as has been shown by numerous studies of the effects of
acute and chronic exercise on a plethora of metabolites in a
variety of tissues. The overwhelming majority of these studies
have performed focused analysis of small numbers of key
metabolites, aiming at testing hypotheses regarding specific
biochemical pathways.1,2 In reality, however, various metabo-
lites are involved in several interacting pathways. Capturing a
global view of the metabolome and of how the metabolome
varies with exercise may help to reveal underlying trends and
discover unexpected markers and mechanisms.

Metabonomics represents a holistic, hypothesis-free ap-
proach to the study of metabolic responses to various stimuli
through powerful data acquisition and advanced data process-
ing techniques that determine a large number of analytes

simultaneously.3 Metabonomics could offer phenotype char-
acterization complementary to genomics or proteomics. Since
the metabolic network is downstream of gene expression and,
as such, closer to cell activity and function, metabonomics may
provide discriminating biomarkers in cases where the knowl-
edge of the genome sequence does not explain a disease
progress or reaction to therapeutic intervention.4,5

Nuclear Magnetic Resonance (NMR), along with mass spec-
trometry,6 offer the major analytical tools in metabolite
fingerprinting.7,8 Although considered a technology of moderate
sensitivity, NMR provides important advantages in untargeted
metabolite profiling including robustness, high identification
power, and superior repeatability and reproducibility.9,10 Me-
tabonomic data related to physical exercise from either human
subjects or animal models are very recent and have mainly
focused on blood serum or plasma, examining the effects of
strenuous endurance exercise,11,12 strength-endurance training
(rowing),13 vigorous exercise, and ingestion of a specific diet14

or postexercise ingestion of different beverages.15,16 The effects
of acute and chronic exercise on the rat liver metabolome17

and the human urinary metabolome18 have also been studied.
Very recently, a metabolomic approach was applied in the
assessment of oxidative stress with strenuous exercise and
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nutritional intervention focusing on the potential beneficial
ingestion of N-acetylcysteine.19 In these studies, biomolecules
identified as key biomarkers included a number of amino
acids, organic acids, and glycerol. Metabonomic approaches
have also been applied for the investigation of the effects of
exercise on pathological conditions including coronary artery
disease,20 intermittent claudication,21 and diabetes.22 The
analytical methods applied in these investigations included
GC-TOF-MS,11,13,15,22 CE-MS,19 LC-MS,12 and NMR.14,18,20,21

In the present paper, we describe a nontargeted, 1H NMR-
based metabonomic analysis of urine samples obtained from
human subjects before and after two exercise sessions differing
in the duration of the rest interval between repeated efforts.
This is part of a broader investigation of metabolism during
intermittent sprint training, a coaching technique employing
repeated short sprints (usually up to 15 s in duration) inter-
spersed with brief rest or low-activity intervals (up to 1 min).
By performing sprints of such short duration, athletes simulate
the conditions of the race, and their muscles recruit the same
energy systems (mainly the ATP-phosphocreatine system and
the lactate system) as they do during the real competition. On
the other hand, by allowing for only brief recovery intervals
that are inadequate for the complete resynthesis of the energy
sources used in previous efforts, athletes aim at causing
extreme perturbations to the muscle metabolic milieu, thereby
eliciting favorable adaptations of the energy systems that power
a sprint. Although training with short sprints and with work:
recovery ratios between 1:4 and 1:11 has been studied extensively,
we could find no data on repeated sprints with very short recovery
intervals (work:recovery 1:1), which are used by coaches in
modern training practice. We have therefore decided to compare
two training protocols containing the same amount of work but
with different work:recovery ratios between repeated sprints, i.e.,
1:1 vs 1:6. We hypothesized that, because it leaves very little time
for the replenishment of energy substrates between efforts, the
former protocol elicits greater metabolic disturbances (i.e., dif-
ferences between pre- and postexercise concentrations of me-
tabolites involved in energy provision) than the latter and may
thus provide a stronger stimulus for adaptations. Indeed, the 1:1
protocol caused a larger drop in muscle phosphocreatine and
larger increases in muscle glycolytic intermediates than the 1:6
protocol, while being more effective at increasing what coaches
refer to as sprint endurance (that is, prolonging the time during
which a high running speed can be maintained), as we report
elsewhere (Saraslanidis et al., submitted for publication). Here we
report on the different effects of the two protocols on the urine
metabolome.

2. Experimental Section

2.1. Sample Collection. Twelve young, moderately trained,
healthy males provided written informed consent to participate

in the study. The study was approved by the institutional ethics
committee, and all procedures were in accordance with the
Helsinki declaration of 1975, as revised in 1996. The participants
were divided into two equivalent groups: group A (age, 21 ( 2;
body mass, 69 ( 7 kg; height, 1.79 ( 0.04 m; BMI 22.1 ( 1.9 kg/
m2; all mean ( SD) and group B (age, 20 ( 1; body mass, 71 ( 7
kg; height, 1.79 ( 0.06 m, BMI 22.0 ( 1.5 kg/m2). These groups
were then randomly assigned to either of two exercise sessions.
Each session included three sets of two 80 m maximal runs. The
two runs in each set were separated by either 10 s (in group A) or
1 min (in group B) of rest, and sets were separated by 20 min of
rest in both groups. Urine was collected before and 35 min after
completion of each exercise session. Urine samples were divided
into aliquots which were stored at -80 °C until analysis. The
experimental design is depicted in Figure 1.

To control for the effect of nutrition on substrate utilization
during exercise, the participants were given standard dietary
plans to be followed during the two days preceding exercise
testing. The plans provided 50% of energy from carbohydrate,
35% from fat, and 15% from protein. On the morning before
exercise testing, they ate a standardized meal. To control for
the effect of hydration status on urine production, apart from
the standardized meal (which contained 0.5 L of water), the
participants consumed 1 L of tap water between the pre- and
postexercise samplings.

2.2. Sample Preparation. An aliquot of each sample was
used for metabonomic analysis through 1H NMR spectroscopy.
Sample pretreatment was kept as simple as possible. The
samples were thawed just before analysis and were centrifuged
at 1500g for 5 min. An amount of 300 µL of the supernatant
was mixed with 300 µL of phosphate buffer, pH 7.4, in
D2O-H2O 70:30 (v/v) containing 0.684 mmol/L sodium 3-tri-
methylsilyl-(2,2,3,3-2H4)-1-propionate (TSP) and 0.2 mg/mL of
NaN3. The mixture was vortexed and transferred into a 5 mm
wide NMR tube.

2.3. Creatinine and Lactate Assays. For validation purposes,
two major urine metabolites, creatinine and lactate, were
determined through spectrophotometry. Creatinine was mea-
sured by use of the CREA plus kit from Roche Diagnostics
(Mannheim, Germany). Lactate was measured according to
former method no. 826-UV from Sigma Diagnostics (St. Louis,
MO). Briefly, one volume of urine (in the case of the pre-
exercise samples) or one volume of urine diluted 1:10 with
water (in the case of the postexercise samples) was mixed with
30 volumes of a working solution made from 10 mL of 0.6
mol/L glycine buffer, pH 9.2 (Sigma), 20 mL of water, 50 mg of
NAD (Applichem, Darmstadt, Germany), and 500 U of lactate
dehydrogenase (Sigma). After incubation for 30 min, the NADH
formed, being equimolar to the lactate initially present in the
sample, was measured at 340 nm by using a molar extinction
coefficient of 6.22 L/(mmol cm).

Figure 1. Design of the study. Blocks depict 80 m sprints, and arrows indicate urine sampling. Time is not shown to scale for clarity.
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2.4. 1H NMR Spectroscopy. All NMR experiments were
carried out on a Bruker (Karlsruhe, Germany) Avance III 600
MHz spectrometer, employing an inverse detection probe (5
mm) with z-gradients, at 300 K. One-dimensional (1D) 1H NMR
spectra were obtained using a standard 1D NOESY pulse
sequence (noesypr1d) included in the spectrometer’s library,
with presaturation during relaxation and mixing time for water
suppression. For each spectrum a total of 128 scans was
collected in 64-k data points over a spectral width of 7211.5
Hz, using a relaxation delay of 2 s, an acquisition time of 4.54 s,
and a mixing time of 0.1 s. An exponential weighting factor
corresponding to a line broadening of 0.3 Hz was applied to
all acquired free induction decays prior to Fourier transforma-
tion and phase correction. All spectra were referenced to the
chemical shift of TSP at δ 0.0 ppm and baseline-corrected by
applying a polynomial curve fitting (A + Bx + Cx2 + Dx3 +
Ex4, except for the region of the water signal) using the XWIN-
NMR software (Bruker BioSpin GmbH).

Two-dimensional (2D) 1H-1H COSY and TOCSY spectra with
water presaturation were acquired for selected samples to
assist/confirm the assignment of metabolites’ spin systems. The
COSY spectra were acquired using a gradient-selected pulse
sequence (sine-shaped gradient pulse) in the magnitude mode,
with 2048 time domain points and 256 increments, while 8
scans were measured per increment. The spectral width was
12 019 Hz with a 2 s relaxation delay and an acquisition time
of 0.08 s in F2. The TOCSY spectra were collected in the phase-
sensitive mode using states time proportional phase incremen-
tation (States-TPPI) and the MLEV1723 pulse sequence for spin
lock over 0.07 s. For each 2D spectrum, 2048 time domain
points were collected, and 1024 increments were measured
with 16 scans per increment. The spectral width was 7211.5
Hz, with a 2 s relaxation delay and an acquisition time of 0.14 s
in F2. The data sets were weighted using a sine-bell-square
apodization function in t1 and t2 prior to Fourier transformation
and phase correction. 1H-13C multiplicity edited HSQC
(DEPT135-HSQC) 2D NMR spectra were recorded for selected
samples, utilizing the sensitivity enhancement in the phase-
sensitive, echo-antiecho-TPPI mode with gradient and multi-
plicity selection and GARP for carbon decoupling during
evolution and acquisition. The spectral width was 20 ppm in
F2 and 165 ppm in F1, with 1024 time domain points and 512
increments with 64 scans per increment, adiabatic inversion
pulses, and a relaxation delay of 1.5 s. The JCH delay was
optimized to 145 Hz. 2D J-resolved (JRES) spectra were
measured with water presaturation, into 8192 data points with
a spectral width of 1000 Hz, while J-coupling domain spectral
width covered 78 Hz with 40 increments and 1 scan per
increment. Data were processed with a sine-bell function in t2

and t1, tilted by 45°, and symmetrized about the F1 axis.
2.5. Statistical Analysis and Pattern Recognition. All 1D 1H

NMR spectra were reduced to a series of descriptors24 by

segmenting the spectral region of δ 0.4-9.6 ppm into regions
(buckets) of 12 Hz width (0.02 ppm) using the AMIX software
(Analysis of Mixtures version 2.7, Bruker Analytische Messtech-
nik). The 4.72-4.98 ppm region, containing the residual peak
of the suppressed water resonance, was excluded to remove
baseline effects of imperfect water suppression. Because the
chemical shifts of histidine, 1-methylhistidine, and 3-methyl-
histidine were susceptible to small pH differences among
samples (despite their buffering), the spectral regions which
include the shifting resonances of these metabolites (8.17-7.87,
7.15-7.01, and 3.77-3.71) were excluded from data reduction.
Histidine, 1-methylhistidine, and 3-methylhistidine signals, at
8.02-7.88, 7.81-7.72, and 8.17-7.95 ppm, respectively, were
separately integrated and considered in the univariate statistical
analysis. The region of the urea’s broad signal (6.05-5.51) was
also excluded. The signal intensity of each of the remaining
387 spectral regions was integrated, and data were normalized
in two ways, that is, to the sum of intensities and to the
creatinine methyl resonance intensity at δ 3.05 ppm, as
explained in the Results section. Although normalization of
untargeted metabonomics data to creatinine may be hindered
by technical and biological difficulties, we observed very stable
1H NMR signals for the molecule.

To identify the variables with the highest influence on the
discrimination between pre- and postexercise and between the
10 s and 1 min rest intervals, two-way analysis of variance
(ANOVA) on the aggregate signals of each identified compound
was performed using the SPSS software (version 15.0, SPSS,
Chicago, IL). The level of statistical significance was set at R )
0.05.

Spectral data were submitted to pattern recognition analyses
with multivariate statistical analysis tools. Principal component
analysis (PCA), partial least-squares discriminant analysis (PLS-
DA), and orthogonal PLS-DA (OPLS-DA) were performed in
SIMCA P11 (Umetrics, Umea, Sweden). PCA provides an
unbiased tool to study the data; both univariate and pareto
scaling modes were tested. Pareto scaling was finally chosen,
as it is more appropriate for analytical spectroscopy data.25 The
supervised methods (PLS-DA, OPLS-DA) were employed mainly
to study the contribution of the variables in group separation
and to find differentiating biomolecules.

3. Results

3.1. Urine Creatinine and Lactate Concentrations. Targeted
assays (section 2.3) showed that there were highly significant
main effects of exercise and rest interval, as well as a highly
significant interaction of the two variables on lactate concen-
tration (all P < 0.001). In Table 1 the urine lactate and creatinine
concentrations determined are presented. This statistical out-
come is explained by the fact that lactate increased with
exercise in both groups, but the increase in group A was 1.8

Table 1. Urine Lactate and Creatinine Concentrations, as Determined Spectrophotometrically, in Group A (10 s Interval between
Repeated Sprints, n ) 6) and Group B (1 min Interval, n ) 6)a

pre-exercise postexercise

metabolite group A group B group A group B effect of exercise effect of interval interaction

lactate (mmol/L) 2.3 ( 1.2 2.3 ( 1.4 134.8 ( 12.7 74.4 ( 32.1 <0.001 <0.001 <0.001
creatinine (mmol/L) 26.2 ( 10.2 27.3 ( 11.9 17.1 ( 3.6 21.6 ( 7.4
lactate/creatinine 0.10 ( 0.07 0.09 ( 0.05 8.22 ( 2.00 3.56 ( 1.75 <0.001 <0.001 <0.001

a Descriptive data are presented as means ( SD. Data in the final three columns are P values resulting from two-way ANOVA; only significant ones (P <
0.05) are shown.
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times the increase in group B. This difference between groups
was even higher (2.3-fold) when the lactate concentration was
normalized to the creatinine concentration (a widely used
practice in clinical chemistry to account for differences in renal
function) resulting in equally significant main effects and
interaction. The lactate-to-creatinine ratio was highly correlated
to the 1H NMR signal intensity of lactate normalized to
creatinine (Spearman’s F 0.94, P < 0.001, Supporting Informa-
tion Figure S1), thus providing strong evidence for the validity
of the quantitative 1H NMR data.

3.2. 1H NMR Spectral Analysis. Urine 1H NMR spectra are
highly complex, dominated by numerous signals of low-molecular
mass metabolites as depicted in Figure 2 and Supporting Infor-
mation Figure S2, where characteristic regions and total spectra,
respectively, of pre- and postexercise urine samples from both
groups are presented. Resonances assignment was carried out
according to the literature,26,27 an in-house database, and spiking
experiments with reference compounds (inosine, myoinositol,
propionate, hydantoin, adenosine, and hypoxanthine, data not
shown), and it was confirmed by 2D COSY, TOCSY, JRES, and
DEPT135-HSQC of selected samples. In total, 43 metabolites were

identified and subsequently assigned, as listed in Table 2 and
Supporting Information Table S1.

3.3. Data Treatment, Normalization, and Multivariate
Analysis. Initially, PCA was applied on data normalized to the
sum of signal intensities in an attempt to decipher whether an
unsupervised method of multivariate statistical analysis can
discriminate groups. Postexercise samples were clearly sepa-
rated from pre-exercise samples mainly due to the massive
response of lactate (representing almost half of the total signal
intensity). To overcome the influence of the extremely intense
lactate signal on the normalization process and to avoid
suppression of the contribution of other metabolites in the
statistical model, integrals were normalized to the creatinine
signal at δ 3.05. The resulting data set provided more robust
models exhibiting higher predictability, as suggested by the
higher R2X(sum) and Q2(sum) values. Hence normalization to
creatinine was chosen, and all further statistical analysis is
based on this approach. (For a list of the generated statistical
models and their component vector values, see Supporting
Information Table S2).

Figure 2. Representative 600 MHz 1H NMR spectra of urine samples. Only spectral regions containing the most significant metabolite
resonances are shown. a, pre-exercise group A; b, pre-exercise group B; c, postexercise group A; d, postexercise group B. Key of
metabolites is as referred to in Table 2.
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Table 2. Human Urine Metabolites Identified by 1H NMR Spectroscopy and Relative Changes in Metabolite Levels after Exercise in
Groups A and Ba

metabolite
key metabolite chemical shift (ppm) group A group B

effect of
exercise

effect of
interval interaction

M1 2-Hydroxyisovalerate (CH3) 0.84, (CH3) 0.97,
(CH) 2.03, (CH) 3.85

1.39 ( 0.35 1.14 ( 0.15 0.010

M2 2-Hydroxybutyrate (CH3) 0.90, (CH) 4.01,
(CH2) 1.65/1.74

2.65 ( 0.82 1.58 ( 0.22 <0.001 0.011 0.010

M3 2-Oxoisocaproate (CH3) 0.94, (CH) 2.10,
(CH2) 2.62

1.74 ( 0.33 1.26 ( 0.12 <0.001 0.012

M4 Leucine (CH3) 0.96, (CH2) 1.70 1.03 ( 0.25 0.93 ( 0.13
M5 Valine (CH3) 0.99, (CH3) 1.04,

(CH) 2.26, (CH) 3.60
1.00 ( 0.19 0.95 ( 0.12

M6 Isoleucine (CH3) 1.01 1.00 ( 0.18 0.94 ( 0.09
M7 3-Hydroxyisobutyrate (CH3) 1.07, (CH) 2.48,

(CH2) 3.68
1.65 ( 0.37 1.52 ( 0.24 <0.001

M8 3-Methyl-2-oxovalerate (CH3) 0.89, (CH3) 1.10,
(CH2) 1.45/1.70, (CH) 2.94

1.86 ( 0.38 1.56 ( 0.22 <0.001 0.013

M9 2-Oxoisovalerate (CH3) 1.12, (CH) 3.02 1.34 ( 0.22 1.14 ( 0.23 0.016
M10 3-Hydroxybutyrate (CH3) 1.20, (CH2) 2.31/2.41,

(CH) 4.16
0.92 ( 0.12 0.89 ( 0.11

M11 Lactate (CH3) 1.33, (CH) 4.12 64.14 ( 16.77 29.96 ( 15.73 <0.001 <0.001 <0.001
M12 2-Hydroxyisobutyrateb (CH3) 1.36
M13 Alanine (CH3) 1.49, (CH) 3.79 2.22 ( 0.39 1.83 ( 0.33 <0.001
M14 Acetate (CH3) 1.93 1.00 ( 0.14 0.93 ( 0.20
M15 Acetoacetate (CH3) 2.24, (CH2) 3.44 0.88 ( 0.25 0.75 ( 0.21
M16 Pyruvate (CH3) 2.38 3.81 ( 0.73 2.13 ( 0.58 <0.001 <0.001 <0.001
M17 Succinate (CH2) 2.41 1.21 ( 0.17 1.07 ( 0.16
M18 Citrate (CH2) 2.51/2.54/2.66/2.69 0.61 ( 0.16 0.63 ( 0.17 0.005 0.018
M19 Dimethylamine (CH3) 2.71 1.05 ( 0.07 0.98 ( 0.11
M20 2-Oxoglutarate (CH2) 2.45/3.01 1.27 ( 0.13 1.15 ( 0.19 0.003 0.002
M21 Creatinine (CH3) 3.05, (CH2) 4.06
M22 cis-Aconitateb (CH2) 3.11, (CH) 5.69
M23 Malonateb (CH2) 3.12
M24 Carnitine (CH3) 3.21, (CH2) 2.43, (CH2) 3.43 1.00 ( 0.28 0.85 ( 0.12
M25 Trimethylamine N-oxide (CH3) 3.27 0.79 ( 0.22 0.81 ( 0.15 0.044 0.029
M26 Taurine (CH2) 3.27, (CH2) 3.43 0.76 ( 0.17 0.85 ( 0.21
M27 Glycine (CH) 3.57 0.77 ( 0.13 0.67 ( 0.13 0.014
M28 N-Methylnicotinamide (CH3) 4.48, (CH) 8.21, (CH) 8.90,

(CH) 8.97, (CH) 9.28
0.71 ( 0.17 0.69 ( 0.16

M29 Glucuronateb (CH) 4.65/5.26, (CH) 3.29/3.58,
(CH) 3.52/3.73, (CH) 3.52,
(CH) 4.07/3.73

M30 Allantoateb (CH) 5.26
M31 Allantoin (CH) 5.39 0.78 ( 0.19 0.72 ( 0.18
M32 Inosine (CH2) 3.85/3.92, (CH) 4.28,

(CH) 4.44, (CH) 4.78, (CH) 6.10,
(CH) 8.24, (CH) 8.35

2.12 ( 0.65 1.81 ( 2.21

M33 Fumarate (CH) 6.52 2.66 ( 0.53 1.73 ( 0.33 <0.001 0.026
M34 trans-Aconitate (CH2) 3.45, (CH) 6.59 1.31 ( 0.25 0.91 ( 0.19
M35 Tyrosine (CH2) 3.02/3.17, (CH) 3.93,

(2,6 CH) 6.91, (3,5 CH) 7.17
1.25 ( 0.73 0.80 ( 0.26

M36 Phenylalanine (CH2) 3.17, (CH) 3.98 (2,6 CH) 7.36,
(4 CH) 7.39 (3,5 CH) 7.43

0.89 ( 0.18 0.78 ( 0.38

M37 Hippurate (CH2) 3.96, (3,5 CH) 7.56,
(4 CH) 7.64, (2,6 CH) 7.84

0.84 ( 0.43 0.73 ( 0.81

M38 Tryptophan (CH2) 3.30/3.42, (CH) 4.02,
(CH) 7.19, (CH) 7.27, (CH) 7.33,
(CH) 7.54, (CH) 7.71

0.89 ( 0.18 0.76 ( 0.09 0.017 0.031

M39 Hypoxanthine (CH) 8.19, (CH) 8.22 7.57 ( 1.30 9.29 ( 4.36 <0.001
M40 Formate (CH) 8.46 0.72 ( 0.17 0.68 ( 0.30 0.020
M41 Histidine (CH) 7.04-7.14, (CH) 7.88-8.02 0.67 ( 0.18 0.76 ( 0.12 0.014
M42 1-Methylhistidine (CH) 6.96-7.05, (CH) 7.72-7.81 0.83 ( 0.09 0.91 ( 0.20
M43 3-Methylhistidine (CH) 7.09-7.18, (CH) 7.95-8.17 1.06 ( 0.92 0.52 ( 0.36

a Spin systems of metabolites were assigned with 2D 1H-1H COSY and TOCSY spectra. Descriptive data are presented as means ( SD. Values
for each metabolite are signal intensity ratios of post- to pre-exercise after normalization to the creatinine signal intensity. Data in the final
three columns are P values resulting from two-way ANOVA; only significant ones (P < 0.05) are shown. b No value is reported due to partial peak
overlap.
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3.3.1. Effect of Exercise. When examining all urine samples
in one workset, a PCA scores plot (Figure 3) provided clear-
cut separation of all pre- from all postexercise samples in PC1
(PC1 accounting for 80.1% of the variation). Furthermore,

differentiation of the postexercise samples of each group was
evident. Postexercise groups showed higher dispersion in PC1,
indicating different responses of the individuals to exercise. In
PC2 (8.4%), the variation due to biological variability and
genetic or environmental/habitual background is described.

Next, statistical models were built excluding lactate (by deleting
the lactate buckets, 4.11-4.15, 1.43-1.45, 1.27-1.39, and 1.23
ppm, from the raw data set before importing into SIMCA P) to
reveal the contribution of other discriminating metabolite mark-
ers. PCA scores plots still provided separation of pre- from
postexercise samples in the first two components (data not
shown). In the subsequent statistical analysis of the effect of
exercise, only data after exclusion of the lactate signal were used.

To further elucidate the effects of exercise, statistical models
were built for each exercise group separately. Figure 4a shows
a PCA scores plot for group A where PC1 and PC2 explain 28.3%
and 24.4% of the variation, respectively. Separation of pre- from
postexercise urine samples is still observed despite the exclu-
sion of lactate and its 13C satellites. These findings were further
scrutinized using PLS-DA and OPLS-DA.29 Both modes pro-
vided better group separation (scores plot of PLS-DA data
shown in Supporting Information Figure S3) with R2X values
higher than 0.56 and R2Y values higher than 0.97, indicating
robust statistical models. A permutation test done in SIMCA P
showed that the predictive power of the models was satisfac-
tory; however, the small number of observations limited the
models’ statistical significance (although it should be noted

Figure 4. Multivariate statistical analysis of data from the 1H NMR analysis of urine from group A (10 s interval between maximal runs).
(a) PCA scores plot: circles, pre-exercise; triangles, postexercise. PC1: 28.3%. PC2: 24.4%. (b) PLS-DA coefficient plot showing the
contribution of the major differentiators. (c) S-plot highlighting differentiators of pre- from postexercise (2.39 corresponds to pyruvate,
2.69 and 2.53 to citrate, etc.; see Table 2). (d) Box plots of NMR signal as ratios normalized to creatinine for selected biomolecules
contributing to the differentiation of pre- from postexercise.

Figure 3. Scores plot after PCA of all urine samples. PC1 accounts
for 80.1% of the variation and discriminates pre- from postex-
ercise samples. PC2 accounts for 8.4% of the variation. Hotelling
ellipse depicts a 95% confidence interval. One postexercise
sample of group B was excluded from the statistical analysis due
to an abnormal signal.
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that, in the original model including lactate, statistical signifi-
cance was high). Next, advanced data illustration tools, such
as contribution plots, S-plots, and VIP (variable importance in
the projection) values, were employed to identify the features
contributing to group separation. Figure 4b is a PLS-DA
coefficient plot showing the markers with the highest contribu-
tion to group separation. The S-plot (generated from the OPLS-
DA model) shows variables contributing highly to the differ-
entiation to be located at the ends of the plot (Figure 4c). These
findings were cross-checked by examining the raw spectral
data. Metabolites that were showing reliable signal differentia-
tion between the groups (as illustrated by PCA trends plots or
by using box plots) were considered as potential markers. As
an example, Figure 4d shows box plots from NMR raw data
(peak integrals) for selected differentiating biomolecules that
exhibited an increase after exercise, while Figure S4 (Supporting
Information) shows trends plots for tryptophan, fumarate,
glycine, pyruvate, and 2-hydroxybutyrate.

Similar thorough examination was applied to the data of
group B. In the PCA (scores plot PC1 vs PC3, Figure 5a), pre-
and postexercise samples were not clearly separated (PC1
accounted for 53.1% of the variation, PC3 for 9.9%). PLS-DA
or OPLS-DA scores plots maximized group differentiation
(scores plot of PLS-DA data shown in Supporting Information
Figure S5) with R2X values higher than 0.62 and R2Y values
higher than 0.92, indicating robust statistical models. In addi-

tion, permutation tests showed good predictive ability. Figure
5b shows the coefficient plot along with assignment of the
major differentiators. Figure 5c shows an S-plot generated from
an OPLS-DA model. Major differentiators were hypoxanthine
and pyruvate (up-regulated). Box plots of the NMR signal for a
selected number of metabolites are given in Figure 5d.

From the above multivariate analysis, it was found that 22
out of the 43 assigned metabolites changed significantly in both
groups after exercise. Thirteen increased, including five prod-
ucts of BCAA catabolism (2-hydroxyisovalerate, 2-oxoisoca-
proate, 3-hydroxyisobutyrate, 3-methyl-2-oxovalerate, and 2-ox-
oisovalerate), 2-hydroxybutyrate, lactate, alanine, pyruvate,
2-oxoglutarate, inosine, fumarate, and hypoxanthine. Nine of
these (2-oxoisocaproate, 3-methyl-2-oxovalerate, 2-oxoisoval-
erate, 2-hydroxybutyrate, lactate, alanine, pyruvate, 2-oxoglu-
tarate, and fumarate) increased to a higher magnitude in group
A than in group B, whereas one (hypoxanthine) showed higher
increase in group B than in group A. This can explain the
clearer separation of pre- from postexercise samples in PCA
for group A. Nine metabolites decreased, including citrate,
trimethylamine N-oxide, taurine, glycine, allantoin, phenyla-
lanine, hippurate, tryptophan, and formate. Of these, glycine
showed a higher decrease in group B.

3.3.2. Effect of Rest Interval. To study the hypothesis that
a 10 s rest interval between maximal sprints elicits greater
metabolic disturbances than a 1 min interval, two new statisti-

Figure 5. Multivariate statistical analysis of data from the 1H NMR analysis of urine from group B (1 min interval between maximal
runs). (a) PCA scores plot: circles, pre-exercise; triangles, postexercise. PC1: 53.1%. PC3: 9.9%. (b) Coefficient plot showing the contribution
of the major differentiators. (c) S-plot highlighting differentiators of pre- from postexercise (8.21 and 8.19 correspond to hypoxanthine,
0.91 to 2-hydroxybutyrate, 3.27 to trimethylamine N-oxide, etc.; see Table 2). (d) Box plots of NMR signal as ratios normalized to
creatinine for selected differentiating metabolites.
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cal models were built, one including the pre-exercise samples
from groups A and B and another including the postexercise
samples of the two groups. The groups were not differentiated
at rest by PCA (Figure 6a), suggesting that, in addition to being
equivalent in terms of age, body mass, and height, they were

equivalent in terms of resting metabolic fingerprints. This was
confirmed by simple main effect analysis, that is, a pairwise
test in the context of the univariate analysis of variance
described below, which showed no difference between groups
in the pre-exercise values of any metabolite.

In contrast, the differentiation of groups was clear in the
model including the postexercise samples (Figure 6b). Lactate,
being higher in group A compared to group B, was the major
differentiator. PLS-DA did not improve the separation of the
pre-exercise samples (no component was calculated), but the
postexercise samples of each group were clearly separated
(scores plot in Supporting Information Figure S6) in a model
that exhibited R2X, R2Y, and Q2 values of 0.686, 0.962, and
0.728, respectively, thus indicating robustness and good pre-
dictability. Markers exhibiting higher alteration in group A
compared to group B after exercise (S-plot shown in Figure
6c) were, in addition to lactate, 2-hydroxybutyrate, 2-oxoiso-
caproate, 3-methyl-2-oxovalerate, 2-oxoisovalerate, alanine,
pyruvate, citrate, 2-oxoglutarate, and fumarate, along with an
unknown metabolite at 3.19 ppm. Metabolites that changed
more in group B compared to group A were glycine and
hypoxanthine. In all, 12 identified metabolites responded
differently to exercise depending on the rest interval between
maximal sprints.

3.4. Univariate Analysis. Analysis of variance on the ag-
gregate signals of the 43 metabolites identified in the 1H NMR
spectra confirmed most of the findings of PLS-DA, as indicated
in Table 2. In particular, the five products of BCAA degradation
mentioned above increased after exercise by an average of
14-86% in both groups (P < 0.05). Augmentation of 2-oxoiso-
caproate (the 2-oxoacid, or R-keto acid, of leucine) and
3-methyl-2-oxovalerate (the 2-oxoacid of isoleucine) was higher
in group A than in group B (P < 0.05).

2-Hydroxybutyrate, derived from methionine in the course of
cysteine synthesis, displayed significant main effects of exercise
and interval, as well as a significant interaction of exercise and
rest interval between repeated sprints (all P e 0.05). These
statistical outcomes were due to the increase with exercise in
group A (by 165%) being higher than that in group B (by 58%).

Large increases after exercise were found in the two products
of the anaerobic carbohydrate degradation, that is, lactate and
pyruvate. In addition, these metabolites displayed a highly
significant effect of interval and a highly significant interaction
of exercise and interval (all P < 0.001). These were due to the
postexercise increases in group A being about double those in
group B. Thus, lactate increased 64-fold in group A and 30-
fold in group B, while pyruvate increased 4-fold in group A and
2-fold in group B.

Amino acids that varied significantly with exercise included
alanine, which doubled (P < 0.001), and glycine, tryptophan,
and histidine, which decreased by 28, 17, and 29%, respectively
(all P < 0.05). Of the Krebs cycle metabolites, citrate decreased
after exercise (by 38%, P ) 0.005), while 2-oxoglutarate and
fumarate increased (P < 0.01), the increase being higher in
group A than B (27 vs 15% for 2-oxoglutarate and 166 vs 73%
for fumarate, both P < 0.05). Finally, three other metabolites
that changed significantly with exercise according to the
ANOVA were trimethylamine N-oxide, which decreased by 20%
(P ) 0.044), hypoxanthine, which increased 8-fold (P < 0.001),
and formate, which decreased by 30% (P ) 0.020).

Figure 6. Multivariate statistical analysis of the effect of rest interval
duration on the urine metabolome. (a) PCA scores plot of the pre-
exercise samples shows no separation of groups A (10 s interval)
and B (1 min interval), suggesting equivalence at rest. (b) PCA
scores plot of the postexercise samples shows group clustering,
suggesting different effects of the two exercise protocols. (c) S-plot
of the postexercise samples highlights the differentiators of the
groups, with signals on the upper right end being higher in group
A and signals on the lower left end being higher in group B.
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4. Discussion
Metabonomic investigation of biological fluids following

physical exercise may provide useful information in under-
standing exercise biochemistry. Urine has not been widely used
in exercise metabonomics. In a very recent study Enea et al.18

detected changes after exercise in the concentration of 11
metabolites by using 1H NMR analysis of urine from female
athletes and nonathletes. Most of the remaining reports on
exercise metabolomics/metabonomics11-16,20-22 have inves-
tigated metabolite changes in blood serum or plasma.

NMR provides a powerful tool for metabonomic surveys, as
it offers direct analysis for a variety of analytes, some of which
are difficult to detect with other technologies (e.g., small polar
molecules, such as organic acids and sugars). Our results show
that physical exercise caused dramatic changes in the urine
metabolome; hence, postexercise urine provided very different
profiles compared to pre-exercise urine. Even after the exclu-
sion of the lactate signal, PCA alone could differentiate pre-
from postexercise urine (whereas in the report by Enea et al.18

exclusion of urea, creatinine, and lactate resulted in only partial
separation). In the present paper, we also investigated the effect
of different rest intervals (10 s vs 1 min) between sprints on
the urine metabolome. It was intriguing to find that the
postexercise samples of the two groups were differentiated.
The critical difference between the two exercise sessions is that
the 10 s interval allows for hardly any replenishment of
immediate energy sources through aerobic reactions, whereas
this may be partly accomplished during the 1 min interval.

Most of the energy needed in sprints like the ones employed
in the present study is provided by two anaerobic energy
systems, the ATP-phosphocreatine system and the lactate
system.30 The increase in the lactate production rate within
exercising muscles, resulting from accelerated carbohydrate
breakdown, and the concomitant increase in the blood lactate
concentration is a common corollary of exercise. Few reports
exist regarding the urine lactate response to exercise,31-33 and
these indicate concentrations that are much higher than the
corresponding muscle or blood concentrations, similarly to the
data of the present study. Thus, finding higher lactate concen-
trations in the post- compared to the pre-exercise urine
samples was not surprising. What was remarkable, however,
was the highly significant difference between groups in the
postexercise samples. This cannot be explained by a difference
in running speed (and, hence, a difference in exercise intensity
which is the main determinant of lactate production rate) since
the two groups did not differ in running time. However, the
difference between groups can be explained by the difference
in the duration of the rest interval between repeated sprints.
In particular, the very limited time available for phosphocre-
atine resynthesis (through aerobic ATP resynthesis from ADP
and Pi in the mitochondria) between the runs in group A (10
s) may have forced the group’s members to enter the second
run with less phosphocreatine, less ATP, and more of ATP’s
degradation products, i.e., Pi, ADP, and AMP. Higher levels of
Pi (a substrate in glycogenolysis) and AMP (an allosteric
activator of phosphorylase b), as well as a lower level of ATP
(an inhibitor of phosphorylase b activation by AMP), would
have resulted in higher acceleration of glycogen breakdown
throughout the second run34 and, hence, higher increases in
its products, pyruvate and lactate. Our findings through both
the multivariate and univariate analyses are in agreement with
this hypothesis, suggesting that the urine concentrations of
pyruvate and lactate reflect the amounts produced in the

exercising muscles during exercise. These and other effects of
exercise and rest interval on the urine metabolome that are
discussed below (based primarily on the results of multivariate
analysis) are depicted graphically in Figure 7.

A multitude of other metabolites exhibited changes in their
urine concentrations after exercise. Inosine and hypoxanthine
are products of purine degradation, and their increased concen-
trations in the postexercise urine samples (especially that of
hypoxanthine, which exhibited the largest increase next to lactate)
are indicative of the high rate of ATP turnover during sprinting.
However, the concentration of allantoin, a product of purine
degradation downstream of hypoxanthine, decreased with exer-
cise. In humans, allantoin is produced nonenzymatically through
the oxidation of urate by superoxide (a reactive oxygen species)
and is further hydrolyzed to allantoate. The decrease in allantoin
suggests that the particular exercise protocol employed may not
have increased superoxide production. Likewise, the lack of
changes in the ketone bodies, acetoacetate and 3-hydroxybutyrate,
suggests that there was no effect of sprinting exercise on the
metabolism of these products of fatty acid degradation. This is
understandable since ketone bodies are formed when there is a
shortage of carbohydrates, and such a shortage is not expected
to occur during brief exercise.

The increases in alanine and 2-oxoglutarate after exercise and
the higher increases in these two metabolites in group A com-
pared to group B are probably the results of the same changes in

Figure 7. Pathways of ATP, carbohydrate, lipid, and amino acid
metabolism with indication of the effect of intermittent sprint
training on urine metabolite concentrations through color coding
as follows: black, no change; orange, increase; red, higher
increase after sprints with a 10 s rest interval compared to sprints
with a 1 min rest interval; blue, decrease; gray, metabolites that
were not identified or quantified.
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pyruvate, since alanine and 2-oxoglutarate are produced from
pyruvate and glutamate through transamination. The similar
response of fumarate (that is, increase after exercise and higher
increase in group A) can be explained by its position downstream
of 2-oxoglutarate in the Krebs cycle. The increases in alanine and
fumarate after exercise may also be due to increased catabolism
of tryptophan and phenylalanine, respectively, since part of the
carbon skeleton of the latter two is converted into the former
two35 and since both these aromatic amino acids decreased with
exercise in the present study.

Regarding citrate, the metabolite of the Krebs cycle that
decreased after exercise, it has been reported that its levels in
rat urine decreased along with increasing blood and urinary
lactate levels, which were caused by administration of mercuric
chloride.36 The authors hypothesized that this lactic acidosis
caused renal tubular acidosis. It is thus possible that the lactic
acidosis caused by maximal exercise in the present study may
have compromised renal function. Attesting to this hypothesis
are the findings of reduced glycine and hippurate after exercise,
both of which have been described as signs of reversible renal
malfunction.37

The finding of exercise-induced increases in all five
products of BCAA degradation that we were able to identify
is in agreement with the prevailing notion in the literature
that BCAA degradation increases in muscle with exercise.38

Two relevant observations are worthy of mention. First, the
postexercise urine samples resemble the profile of maple
syrup urine disease38 in which there is a deficiency of
branched-chain 2-oxoacid dehydrogenase (BCOAD), result-
ing in a buildup of branched-chain 2-oxoacids (2-oxoisov-
alerate, 2-oxoisocaproate, and 3-methyl-2-oxovalerate) that
cannot be oxidized, as well as of 2-hydroxyisovalerate
(produced by reduction of 2-oxoisovalerate). However, the
increase of these metabolites in the urine after exercise
should not be interpreted as a defect or inhibition of BCOAD,
which, on the contrary, is activated by exercise.39 Attesting
to this is the increase in 3-hydroxyisobutyrate, which lies
past the reaction catalyzed by BCOAD in the pathway of
valine catabolism. Rather, the increase in branched-chain
2-oxoacids seems to reflect their overproduction through
transamination of BCAAs which, in turn, exhibit increased
turnover during exercise as a result of increased proteolysis
in the visceral area and muscle.40 Second, the products of
leucine and isoleucine degradation (2-oxoisocaproate and
3-methyl-2-oxovalerate, respectively) but not those of valine
degradation (2-oxoisovalerate, 2-hydroxyisovalerate, and
3-hydroxyisobutyrate) increased more in group A than in
group B, suggesting that the three BCAAs may not respond
uniformly to exercise.

Of interest is the exercise-induced increase in 2-hydroxy-
butyrate and its higher postexercise concentration in group
A compared to group B. 2-Hydroxybutyrate is produced in
mammalian tissues (principally hepatic) that synthesize
glutathione. Oxidative stress can dramatically increase the
rate of hepatic glutathione synthesis. Under such conditions,
supplies of cysteine for glutathione synthesis become limit-
ing, so homocysteine is diverted from the transmethylation
pathway forming methionine into the transsulfuration path-
way forming cystathionine. 2-Oxobutyrate is released when
cystathionine is cleaved to cysteine. 2-Oxobutyrate is then
reduced by lactate dehydrogenase to 2-hydroxybutyrate.41

It has been reported that an increased [NADH]/[NAD+] ratio
is the most important factor for the production of 2-hy-

droxybutyrate,42 and this observation may explain the higher
postexercise 2-hydroxybutyrate concentration in group A,
since a higher glycolytic rate as a result of the shorter rest
interval, as evidenced by the higher pyruvate concentration,
would result in a higher rate of conversion of NAD+ to NADH.

Formate is derived from methanol which is either inhaled
or ingested (mainly in the form of methyl esters) from foods
such as fresh fruits, fruit juices, certain vegetables, and the
artificial sweetener, aspartame. Methanol is converted to
formaldehyde by methanol dehydrogenase, and formaldehyde
is subsequently converted to formate by formaldehyde dehy-
drogenase.43 Both dehydrogenations require NAD+ as the
reducing agent. Thus, it is possible that the shortage of NAD+

as a result of high-intensity exercise, as explained above, may
have caused a decrease in the rate of formate production. This
may explain the lower formate concentration in the post-
compared to the pre-exercise urine samples.

1-Methylhistidine and 3-methylhistidine are two amino acids
that are considered as markers of meat consumption44 and
muscle protein breakdown.40 The lack of changes in their
urinary levels after short-term exercise in the present study is
in accordance with their dietary origin, on one hand, and
suggests that the exercise protocol employed did not change
the rate of muscle protein breakdown.

5. Conclusions

The present study illustrates the utility of holistic analytical
methods in the study of exercise metabolism. 1H NMR-based
metabonomics provided useful information for the under-
standing of metabolic changes induced by specific training
schedules. Urine samples obtained after exercise protocols
differing in as little as the rest interval between repeated sprints,
not the sprints themselves, can be classified and safely predicted
even when applying nonsupervised statistical methods of analysis.
In this way, important biomolecules involved in exercise bio-
chemistry can be identified and further studied. Separation of pre-
from postexercise samples was assigned mainly to lactate, pyru-
vate, hypoxanthine, compounds of the Krebs cycle, amino acids,
products of BCAA catabolism, 2-hydroxybutyrate, and hippurate.
Most of these metabolites increased in urine with exercise and
have been described to also increase in muscle with exercise.
Separation of the 10 s from the 1 min rest interval was assigned
mainly to lactate, pyruvate, alanine, compounds of the Krebs
cycle, 2-oxoacids of BCAA, and 2-hydroxybutyrate. All of these
metabolites increased more with the short compared to the long
interval, thus supporting the hypothesis that the former elicited
greater metabolic disturbances than the latter as a result of the
very limited time available for recovery. The facts that such
methodology can be applied to urine, a biological material readily
available and noninvasively obtained, and that urine reflects many
of the exercise-induced changes occurring in muscle are ad-
ditional advantages.
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